
1

Microcontroller
Fundamentals

Learning Objectives

 Explain the general architecture of a
microcontroller

 List the key features of the ATmega328
microcontroller

 Explain the features and elements of the Arduino
and Spartronics Experimenter Shield (SES)

 Explain the concepts of microcontroller pins as
inputs and outputs

 Convert between binary and hexadecimal digits

2

Mechatronics Concept Map

Controller
(Hardware & Software)

System to
Control

Sensor

Signal
Conditioning

Power
Interface

Actuator

User
Interface

Power
Source

BJ Furman 22JAN11

INTEGRATION

What is a Microcontroller?

http://www.freescale.com/files/microcontrollers/doc/ref_manual/M68HC05TB.pdf

ANALOG
INPUTS

What is the difference between a ‘Digital Input’ and an ‘Analog Input’?

3

ATmega328 Internal Architecture

ATmega328 data sheet pp. 2, 5

http://www.adafruit.com/index.php?main_page=popup_image&pID=50

ATmega328 Features

ATmega328 data sheet p. 1

http://www.atmel.com/Images/Atmel-8271-8-bit-AVR-Microcontroller-
ATmega48A-48PA-88A-88PA-168A-168PA-328-328P_datasheet.pdf

4

Arduino Duemilanove
http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove

http://arduino.cc/en/uploads/Main/ArduinoDuemilanove.jpg

Pin 13 LED

USB
connector

Barrel jack

Digital pins header

Reset button

ATmega328 MCU

Analog pins header

Power-ground header

See the handout: Arduino_ATmega328_pin_mapping_and_schematic

Arduino Uno R3

http://www.adafruit.com/index.php?main_page=popup_image&pID=50

ATmega16u2 replaces FT232RL for USB-serial communication

See: http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-uno-faq

5

Arduino Due
Atmel SAM3X8E processor (32 bit ARM Cortex M3 architecture, 84MHz)

http://www.adafruit.com/index.php?main_page=popup_image&pID=1076

See: http://arduino.cc/en/Main/ArduinoBoardDue

Note: 3.3 V !!

Arduino Duemilanove/Uno Features
Microcontroller ATmega168/328

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 16 KB (ATmega168) or 32 KB (ATmega328) of which 2
KB used by bootloader

SRAM 1 KB (ATmega168) or 2 KB (ATmega328)

EEPROM 512 bytes (ATmega168) or 1 KB (ATmega328)

Clock Speed 16 MHz

http://www.arduino.cc/en/Main/ArduinoBoardDuemilanove

6

http://arduino.cc/en/uploads/Main/arduino-duemilanove-schematic.pdf

ATmega328 Microcontroller
Pin number

Pin name

Special
function

Source:http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P

Note the
limitations!

p. 316

7

Absolute Maximums

ATmega328 data sheet p. 316

Microcontroller Ports and Pins

 The communication channels
through which information
flows into or out of the
microcontroller
 Ex. PORTB
 Pins PB0 – PB7
 May not be contiguous
 Often bi-directional

C

See next slides!

8

Port Pin Data Directionality
 Input
 When you want to take information from the external

world (sensors) into the MCU
 Output
 When you want to change the state of something

outside the MCU (turn a motor on or off, etc.)
 Pins default to input direction on power-up or

reset
 Your program can set or change the

directionality of a pin at any time

ATmega328
Block Diagram

Input

Output

9

M68HC11 microcontroller

Setting the Pin Data Direction
 Arduino
 pinMode(pin_no., dir)

 Ex. Make Arduino pin 3 (PD3) an output
 pinMode(3, OUTPUT);

 pinMode(PIN_D3, OUTPUT); // with me106.h

 Note: one pin at a time
 Suppose you wanted Arduino pins 3, 5, and 7

(PD3, PD5, and PD7) to be outputs?
 Is there a way to make them all outputs at the

same time?
 Yes! Answer coming later…

10

Pin Voltages
 Microcontrollers are fundamentally digital

devices. For digital IO pins:
 Information is ‘coded’ in two discrete states:

 HIGH or LOW (logic: 1 or 0)
 Voltages

 TTL
 5 V (for HIGH)
 0 V (for LOW)

 3.3 V CMOS
 3.3 V (for HIGH)
 0 V (for LOW)

Pin Used as an Output
 Turn on an LED, which is

connected to pin Arduino pin 0
(PD0) (note the resistor!)

What should the data
direction be for pin 0 (PD0)?
 pinMode(____, ____);

 Turn on the LED
 digitalWrite(PIN_LED,HIGH);

 Turn off the LED
 digitalWrite(PIN_LED,LOW);

ATmega328

Arduino
pin 0
(PD0)

11

Pins as Inputs and Pull-up Resistors - 1

 Using a switch as a sensor
 Ex. Seat belt sensor
 Detect the switch state

 What should the data direction
be for Arduino pin 3 (PD3)?

 pinMode(____, ____);

 What will the voltage be on
PD3 when the switch is closed?

 What will the voltage be on
PD3 when the switch is open?
 Indeterminate!

ATmega328

Arduino
pin 3
(PD3)

SPST

momentary

Pins as Inputs and Pull-up Resistors - 2

 Switch as a sensor, cont.
 Make the voltage on the pin

determinate by turning on the pull-
up resistor for PD3
 Assuming PD3 is an input:
 digitalWrite(PIN_SWITCH,HIGH);

turns on the “pull-up” resistor
 pinMode(PIN_SWITCH,INPUT_PULLUP);

 What will the voltage on PD3 be when
the switch is open?
 VTG

 What will the voltage on PD3 be when
the switch is closed?

ATmega328

PD31

VTG= +5V

0

12

Pins as Inputs and Pull-up Resistors - 3

 Switch as a sensor, cont.
 To turn off the pull-up

resistor
 Assuming PD3 is an input:

digitalWrite(PIN_SWITCH,LOW);
turns the “pull-up” resistor off

ATmega328

PD3

VTG= +5V

0

1

Pins as Inputs and Pull-up Resistors - 4

 Possibility of ‘weak drive’
when pull-up resistor is
turned on
 Pin set as an input with a

pull-up resistor turned on
can source a small current
 Remember this!

ATmega328

PD3

VTG= +5V

0

1

iweak

13

Spartronics Experimenter Shield

RGB LED

RC servo header

Temperature sensor

Digital pins header

Reset button

Piezo
speaker

Analog pins header

PotentiometerPhotoresistor

Pwr-gnd header

Red LEDs

Tact switches

Red-RGB jumper

Handling the Arduino - How NOT to Do It!

Improper Handling - NEVER!!!

14

Handling the Arduino - The Proper Way

Proper Handling - by the edges!!!

Spartronics Experimenter LED Pinout

 Pin and LED map
 11 - LED0 (red)
 9 - LED1 (red) or RGB (green)
 6 - LED2 (red) or RGB (blue)
 3 - LED3 (red) or RGB (red)
 13 - LED on Arduino

Jumper determines whether pins
map to red LEDs or the RGB

11 9 6 3

15

13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCK MISO MOSI SS OC1 ICP AIN1 AIN0 T1 T0 INT1 INT0 TXD RXD

LED LED LED

pwm pwm pwm pwm pwm pwm

LED0 LED1 LED2 LED3

green blue red

piezo

servo

SW0 SW1 SW2 SW3

Spartronics Experimenter Digital Pin
Assignments

See the Introduction to the Arduino Microcontroller laboratory exercise

7 6 5 4 3 2 1 0

photocell POT temp sensor

Spartronics Experimenter Analog Pin
Assignments

See the Introduction to the Arduino Microcontroller laboratory exercise

16

Binary and Hexadecimal Numbers - 1

 Microcontrollers are fundamentally digital
(as opposed to ‘analog’) and use binary
logic
 Two states: high and low, 1 or 0, on or off

 Often 5V or 0V
 One binary digit is called a bit

 It can take on two possible states: 1 or 0
 Eight binary digits are called a byte
 Four binary digits are called a nibble

Binary and Hexadecimal Numbers - 2

1 1 0 0 1 1 0 1

7 6 5 4 3 2 1 0Bit No.

Lower nibble
(4 bits)

Upper nibble
(4 bits)

LSB
(Least Significant Bit)

MSB
(Most Significant Bit)

 Byte and bits

17

Binary and Hexadecimal Numbers - 3

1 1 3 8 (Base 10 or decimal number)

11388301001000

108103101101 0123

1 1 0 1
(Base 2 or binary number)

131048

21202121 0123

(Base 10)

3 2 1 0Bit No.

Place Value

• What range of decimal values can 4 bits represent?
• How many values in total can 4 bits represent?

(Base 10)

0 to 15

16

Binary and Hexadecimal Numbers - 4
0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7
1 0 0 0 8
1 0 0 1 9
1 0 1 0 A
1 0 1 1 B
1 1 0 0 C
1 1 0 1 D
1 1 1 0 E
1 1 1 1 F

HEXBinary

Why is hex important?

One hex digit can be
used as shorthand to
represent four binary
digits

Two hex digits can be
used as shorthand to
represent eight
binary digits or one
byte

18

Using Hex Values

Practice
 0b11000111 in hex (0b is C notation that says,

“interpret what follows as a binary number”)
 0b10011001 in hex
 0b10011001 as a base 10 number
 0x5A in binary (use 8 bits)
 0b11111111 in hex and as a base 10 number
 (37)10 in binary and hex
the prefix '0x' is C notation that means that the digits which follow are hex digits
the prefix '0b' means that the digits which follow are binary digits

Back to PORT details

19

Solution
 1100 0111 in hex = 0xC7
 1001 1001 in hex = 0x99
 1001 1001 in base 10 = 153
 0x5A in binary = 0b0101 1010
 0b1111 1111 = 0xFF or 255
 (37) = 0b0010 0101 or 0x25

So What?
 Recall the question:
 Is there a way change the data direction for a set of

pins all at the same time?
 All the work of MCU happens through registers

(special memory locations)
 Registers on the Atmega328 are 8-bits wide

 The data direction register (DDRx) handles the
data directions for pins in PORTx

Source:http://www.atmel.com/dyn/products/product_card.asp?PN=ATmega328P p. 93

20

Data Direction Register
 If the bit is zero -> pin will be an input
 Making a bit to be zero == ‘clearing the bit’

 If the bit is one -> pin will be an output
 Making a bit to be one == ‘setting the bit’

 To change the data direction for a set of pins
belonging to PORTx at the same time:
1. Determine which bits need to be set and cleared in

DDRx
2. Store the binary number or its equivalent (in an

alternate base, such as hex) into DDRx

ATmega328 Registers of Interest
 See the ATmega328 data sheet, pp. 76-94
 For digital IO, the important registers are:
 DDRx

 Data Direction bit in DDRx register (read/write)
 PORTx

 PORTx data register (read/write)
 PINx

 PINx register (read only)

21

PORT Pin and
register details

ATmega328 datasheet, pp. 76-94

Jump to bits

Example 1

 Arduino approach Alternate approach

 Make Arduino pins 3, 5, and 7 (PD3, PD5, and
PD7) to be outputs

pinMode(3, OUTPUT);
pinMode(5, OUTPUT);
pinMode(7, OUTPUT);

DDRD = 0b10101000;

or

DDRD = 0xA8;

or

DDRD | = 1<<PD7 | 1<<PD5 | 1<<PD3;

More on this coming soon!

Or if me106.h is used:

pinMode(PIN_D3, OUTPUT);
pinMode(PIN_D5, OUTPUT);
pinMode(PIN_D7, OUTPUT);

22

Example 2

 Arduino approach Alternate approach

 Make pins Arduino pins 0 and 1 (PD0 and PD1)
inputs, and turn on pull-up resistors

pinMode(0, INPUT);
pinMode(1, INPUT);
digitalWrite(0, HIGH);
digitalWrite(1, HIGH);

DDRD = 0; // all PORTD pins inputs
PORTD = 0b00000011;
or
PORTD = 0x03;

or better yet:
DDRD & = ~(1<<PD1 | 1<<PD0);
PORTD | = (1<<PD1 | 1<<PD0);

More on this coming soon!

Or if me106.h is used:

pinMode(PIN_D0, INPUT);
pinMode(PIN_D1, INPUT);
digitalWrite(PIN_D0, HIGH);
digitalWrite(PIN_D1, HIGH);

Structure of an Arduino Program
 An arduino program == ‘sketch’

 Must have:
 setup()
 loop()

 setup()
 configures pin modes and

registers
 loop()

 runs the main body of the
program forever
 like while(1) {…}

 Where is main() ?
 Arduino simplifies things
 Does things for you

/* Blink - turns on an LED for DELAY_ON msec,
then off for DELAY_OFF msec, and repeats
BJ Furman rev. 1.1 Last rev: 22JAN2011
*/
#define LED_PIN 13 // LED on digital pin 13
#define DELAY_ON 1000
#define DELAY_OFF 1000

void setup()
{
// initialize the digital pin as an output:
pinMode(LED_PIN, OUTPUT);

}

// loop() method runs forever,
// as long as the Arduino has power

void loop()
{
digitalWrite(LED_PIN, HIGH); // set the LED on
delay(DELAY_ON); // wait for DELAY_ON msec
digitalWrite(LED_PIN, LOW); // set the LED off
delay(DELAY_OFF); // wait for DELAY_OFF msec

}

23

Digital IO – Practice 1
 ‘Reading a pin’
 Write some lines of C code for the

Arduino to determine a course of
action if the seat belt has been
latched (switch closed).
 If latched, the ignition should be

enabled through a call to a function
ig_enable().

 If not latched, the ignition should be
disabled through a call to a function
ig_disable()

Write pseudocode first

ATmega328

PD3

Digital IO – Practice 1 Solution
 ‘Reading a pin’

 Pseudocode:
Set up PD3 as an input
Turn on PD3 pull-up resistor
Read voltage on Arduino pin 3 (PIN_D3)
IF PIN_D3 voltage is LOW (latched), THEN

call function ig_enable()
ELSE

call function ig_disable()

ATmega328

PD3

VTG= +5V

0

1

24

Digital IO – Practice 1 Solution
 ‘Reading a pin’
 Pseudocode:

Set up PD3 as an input
Turn on PD3 pull-up resistor
Read voltage on Arduino pin 3 (PIN_D3)
IF PIN_D3 voltage is LOW (latched), THEN

call function ig_enable()
ELSE

call function ig_disable()

ATmega328

PD3

VTG= +5V

0

1

#define PIN_SWITCH 3
#define LATCHED LOW
pinMode(PIN_SWITCH,INPUT_PULLUP);
belt_state = digitalRead(PIN_SWITCH);
if (belt_state == LATCHED)
{ ig_enable(); }
else
{ ig_disabled(); }

One way
(snippet, not full program)

Digital IO – Practice 2
 ‘Reading from and writing to a

pin’
 Write some lines of C code for

the Arduino to turn on a lamp
(PD2) and buzzer (PD3) if the
key is in the ignition (PD0
closed), but seat belt is not
latched (PD1 open)
 (diagram shows only one of the two

switches, but both are similar)

 Pseudocode first

ATmega328

PD0, PD1

PD2

PD3

25

Digital IO – Practice 2 Pseudocode
 Pseudocode:

Set up data direction of pins
Make PD0 and PD1 inputs
Turn on pull up resistors for PD0 and PD1
Make PD2 and PD3 outputs

Loop forever
IF key is in ignition THEN

IF belt is latched, THEN

Turn off buzzer
Turn off lamp

ELSE

Turn on lamp
Turn on buzzer

ELSE

Turn off buzzer
Turn off lamp

ATmega328

PD0, PD1

VTG= +5V

0

1

PD2

PD3

Digital IO – Practice 2 (Arduino style code)
#define PIN_IGNITION 0
#define PIN_SEATBELT 1
#define PIN_LED 2
#define PIN_BUZZER 3
#define SEATBELT_LATCHED LOW
#define KEY_IN_IGNITION LOW
#define LED_ON HIGH
#define LED_OFF LOW
#define BUZZER_ON HIGH
#define BUZZER_OFF LOW
void setup()
{

pinMode(PIN_IGNITION, INPUT_PULLUP); // key switch
pinMode(PIN_SEATBELT, INPUT_PULLUP); // belt latch switch
pinMode(PIN_LED, OUTPUT); // lamp
pinMode(PIN_BUZZER, OUTPUT); // buzzer

}
void loop()
{ /* see next page for code */}

ATmega328

PD0, PD1

VTG= +5V

0

1

PD2

PD3

26

Digital IO – Practice 2 (Arduino style code)
/* see previous page for code before loop() */
void loop()
{

int key_state = digitalRead(PIN_IGNITION);
int belt_state = digitalRead(PIN_SEATBELT);
if (key_state == KEY_IN_IGNITION)

{
if (belt_state == SEATBELT_LATCHED)
{

digitalWrite(PIN_BUZZER, BUZZER_OFF);
digitalWrite(PIN_LED, LED_OFF);

}
else
{

digitalWrite(PIN_BUZZER, BUZZER_ON);
digitalWrite(PIN_LED, LED_ON);

}
else

{
digitalWrite(PIN_BUZZER, BUZZER_OFF);
digitalWrite(PIN_LED, LED_OFF);

}
}

}

ATmega328

PD0, PD1

VTG= +5V

0

1

PD2

PD3

Digital IO – Practice 3 (Port style code)
/* NOTE: #defines use predefined PORT pin numbers for ATmega328 */
#define PIN_IGNITION PD0
#define PIN_SEATBELT PD1
#define PIN_LED PD2
#define PIN_BUZZER PD3
#define SEATBELT_LATCHED LOW
#define KEY_IN_IGNITION LOW
#define LED_ON HIGH
#define LED_OFF LOW
#define BUZZER_ON HIGH
#define BUZZER_OFF LOW
#define _BIT_MASK(bit) (1 << (bit)) // same as _BV(bit)
void setup()
{

PORTD = 0; // all PORTD pullups off
DDRD | = _BIT_MASK(PIN_LED) | _BIT_MASK(PIN_BUZZER); // LED and buzzer
PORTD | = _BV(PIN_IGNITION) | _BV(PIN_SEATBELT); // pullups for switches

}

/* See next page for loop() code */

ATmega328

PD0, PD1

VTG= +5V

0

1

PD2

PD3

27

Digital IO – Practice 3 (Port style code)
/* see previous page for setup() code */
void loop()
{

uint8_t current_PORTD_state, key_state, belt_state;
current_PORTD_state = PIND; // snapshot of PORTD pins
key_state = current_PORTD_state & _BV(PIN_IGNITION);
belt_state = current_PORTD_state & _BV(PIN_SEATBELT);
if (key_state == KEY_IN_IGNITION)
{

if (belt_state == SEATBELT_LATCHED)
{

PORTD & = ~(_BV(PIN_LED) | _BV(PIN_BUZZER));
}
else
{

PORTD | = (_BV(PIN_LED) | _BV(PIN_BUZZER));
}

}
else
{

PORTD & = ~(_BV(PIN_LED) | _BV(PIN_BUZZER));
}

}

ATmega328

PD0, PD1

VTG= +5V

0

1

PD2

PD3

Summary
 Data direction
 Input is default, but okay to set explictly
 Output

 Arduino style: pinMode(pin_no, mode)
 Alternate: Set bits in DDRx

 Pull-up resistors
 Pin must be an input

 Arduino style: digitalWrite(pin_no, state)
 Alternate style: Set bits in PORTx

28

Summary, cont.
 Read digital state of a pin
 Arduino style: digitalRead(pin_no)
 ‘Port-style’: need to form a bit mask and use it

to ‘single-out’ the bit of interest
 Write to a pin (assuming it is an output)

 Arduino style: digitalWrite(pin_no, state)
 ‘Port-style’: use a bit mask and bit

manipulation techniques to set or clear only
the bits of interest

